Name _	Ken	
_	9	

Data	
Date	

Solutions Review Sheet Quantitative Chemistry

For the problems, be sure to show your work, and use significant figures!

- 1. Define the following in your own words:
 - a. Solution -

e. Saturated -

b. Solute -

f. Unsaturated –

c. Solvent -

g. Concentrated -

d. Soluble -

h. Dilute -

2. Complete the chart below related to the compounds and their solubility in water.

Na: 0,9	Compound	Type of Bond	Is it soluble in water?	
		(Ionic, PC, NPC)		
C1 = 3.0	NaCl Na-Cl	DEN=10.9-3.0 =2-1	4	
C:2-5		Ionic	Jes	
H=2-1	C ₈ H ₁₈ C− H	DEN= 2-5-2-1 = 0.4	<u> </u>	
•		NPC	70	
0:3.5	CH₂O < C-Ø	DEN= 12.5-3-5 = 1.0	.	
· ·	<u> </u>	PL	Jes	
/AC-11 AEN-12 5-2 1150-4				

3. Complete the table with the following equations. Know these!

Percent by Mass	Percent by Volume
Molarity	Dilution

4. Drugstores sell 3.00% hydrogen peroxide solutions. If you purchase a bottle with a mass of 250. grams, how many grams of hydrogen peroxide are in the bottle?

5. What is the molarity of a 2.00 L solution containing 0.15 moles of solute?

6. How many grams of FeCl₃ are needed to make 100. mL of a 1.00 M solution?

Briefly describe how you would prepare the above solution using a 100-mL volumetric flask.

- 2) Add water to dissolve it
- 3) Fill with water to the calibration work
 7. A stock solution contains 1.0 M silver nitrate. If you wanted to prepare 300. mL of 0.10 M silver nitrate, how many milliliters of the stock solution would you use?

$$M \leq V_{L} = M d V_{d}$$

 $(1-0M)V_{c} = (0.10M)(300mL)$
 $V_{c} = 30.mL$

8. How many milliliters of 0.500 M KI are needed to react with 25.0 mL of 0.100 Pb(NO₃)₂?

$$2KI + Pb(NO_3)_2 \rightarrow PbI_2 + 2KNO_3$$

$$25.0mL \times 1L \longrightarrow 0.100 \text{ mol } Pb(NO_3)_2 \times \frac{2 \text{ mol } KI}{1 \text{ mol } Pb(NO_3)_2} \xrightarrow{0.500 \text{ mol } KI}$$

$$\times \frac{1000 \text{ mL}}{1 \text{ L}} = 10.0 \text{ mL}$$

9. Copper reacts with silver nitrate according to the following reaction:

$$Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$$

a. If 1.7 grams of copper are added to 100. mL of 0.10 M silver nitrate, what is the limiting

b. How many grams of silver would be produced?