

# What are ionic bonds, and how are they formed? Computer Lab: Ionic Bonds

- Go to
   <u>http://www.pbslearningmedia.org/asset/</u>
   <u>lsps07 int ionicbonding/</u>
- Read each screen and follow the directions where appropriate.
- Answer the questions on the screens in your packet.

# What are polar and nonpolar covalent bonds, and how are they formed? Computer Lab: Covalent Bonds

- Go to
   <u>http://www.pbslearningmedia.org/asset/</u>
   <u>lsps07 int covalentbonding/</u>
- Read each screen and follow the directions where appropriate.
- Answer the questions on the screens in your packet.

## What are polar and nonpolar covalent bonds, and how are they formed? (Packet Pg 4) Compare/Contrast: Ionic and Covalent Bonds

- · Differences with regard to:
  - How are the bonds formed?
  - What is the charge on the atoms?
  - How many bonds can be formed between the atoms?
  - What types of atoms are involved?

### What are polar and nonpolar covalent bonds, and how are they formed? Computer Lab: Compound Treasure Hunt

• You will receive a set of compounds. For each compound, write the name (from the card), the formula, the common name or purpose, and identify whether or not it contains ionic bonds.



## What are polar and nonpolar covalent bonds, and how are they formed? Review Atomic Radius (size)

- · The atomic radius of an element is half of the distance between the centers of two atoms of that element that are just touching each other.
- · Relative size of ions and their parents:



- Cations are smaller than their parents.
- Anions are larger than their parents.



#### What are polar and nonpolar covalent bonds, and how are they formed? Review Atomic Radius (size) • Down a column? (con't) The nuclear charge also н increases because of additional protons. Li However, the full nuclear charge is shielded from

the outer electrons because of the inner electrons and distance from the nucleus.











# What are polar and nonpolar covalent bonds, and how are they formed?

- Ability of an atom in a molecule to attract electrons to itself.
- It is a measure of how "greedy" an atom is for electrons.
- Exceptions: Noble gases are not included in this general trend.









| What are polar and n         | egativity Di                                                     | ow are they formed?  |
|------------------------------|------------------------------------------------------------------|----------------------|
| • ΔΕΝ =   ΕΝ<br>• Na–Cl: ΔΕΝ | <sub>Element 1</sub> − EN <sub>Elem</sub><br>I =   0.9 − 3.0   = | nent 2  <br>= 2.1    |
| IONIC                        | POLAR<br>COVALENT                                                | NONPOLAR<br>COVALENT |
| ΔEN ≥ 1.70                   | ΔEN: 0.41 – 1.69                                                 | ΔEN: 0.00 – 0.40     |
|                              |                                                                  |                      |



| What are<br>Elec | polar and nonpolar covaler | nt bonds, and how are | they formed? |
|------------------|----------------------------|-----------------------|--------------|
| Compou<br>nd     | ∆EN Values                 | Difference            | Bond Type    |
| Na – Cl          | 0.9 – 3.0                  | = 2.1                 |              |
| 0-0              | 3.5 – 3.5                  | = 0.0                 |              |
| 0 – S            | 3.5 – 2.5                  | = 1.0                 |              |
| P – H            | 2.1 – 2.1                  | = 0.0                 |              |
| C – O            | 2.5 – 3.5                  | = 1.0                 |              |
| K – O            | 0.8 – 3.5                  | = 2.7                 |              |
| N – H            | 3.0 – 2.1                  | = 0.9                 |              |
| Mg – F           | 1.2 – 4.0                  | = 2.8                 |              |
| 5                |                            |                       |              |



| Elec         |            |            | rence     |
|--------------|------------|------------|-----------|
| Compou<br>nd | ∆EN Values | Difference | Bond Type |
| Na – Cl      | 0.9 – 3.0  | = 2.1      | Ionic     |
| 0 – 0        | 3.5 – 3.5  | = 0.0      | Nonpolar  |
| 0 – S        | 3.5 – 2.5  | = 1.0      | Polar     |
| P – H        | 2.1 – 2.1  | = 0.0      | Nonpolar  |
| C – O        | 2.5 – 3.5  | = 1.0      | Polar     |
| K – O        | 0.8 – 3.5  | = 2.7      | Ionic     |
| N – H        | 3.0 – 2.1  | = 0.9      | Polar     |
| Ma – F       | 1.2 – 4.0  | = 2.8      | lonic     |

# What are polar and nonpolar covalent bonds, and how are they formed? Dipole Moments

Represents the atom's polarity magnitude and direction (+ → –)

# What are polar and nonpolar covalent bonds, and how are they formed? Dipole Moments

- Khan Academy:
- <u>https://www.khanacademy.org/science/organic-chemistry/gen-chem-review/electronegativity-polarity/v/dipole-moment</u>













## What are polar and nonpolar covalent bonds, and how are they formed? Compare & Contrast: Polar & Nonpolar Covalent

- Differences with regard to:
  - Electronegativity Difference
  - Polar Positive and Polar Negative Side WRT Electronegativity
  - Can it have Permanent Dipole Moment?
  - Effect of Molecule Shape

# What are polar and nonpolar covalent bonds, and how are they formed? REVIEW

• Bonds involve electrons.

| What are pola                     | r and nonpolar covale | nt bonds, and how ar                   | e they formed?                          |
|-----------------------------------|-----------------------|----------------------------------------|-----------------------------------------|
|                                   | Types o               | f Bonds                                |                                         |
|                                   | lonic<br>Ex. NaCl     | Polar Covalent<br>Ex. H <sub>2</sub> O | Nonpolar Covalent<br>Ex. O <sub>2</sub> |
| Electrons                         |                       |                                        |                                         |
| Elements                          |                       |                                        |                                         |
| Structure with<br>Other Compounds |                       |                                        |                                         |
| Electronegativity<br>Differences  |                       |                                        |                                         |
| Bond Strength                     |                       |                                        |                                         |
| Properties of<br>Compounds        |                       |                                        |                                         |

| What are pola                     | Types o                                    | nt bonds, and how are<br>f Bonds             | they formed?                                                |
|-----------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
|                                   | Ionic<br>Ex. NaCl                          | Polar Covalent<br>Ex. H <sub>2</sub> O       | Nonpolar Covalent<br>Ex. O <sub>2</sub>                     |
| Electrons                         | Transferred                                | Shared Unequally                             | Shared Equally                                              |
| Elements                          | Metals &<br>Nonmetals                      | Nonmetals                                    | Nonmetals                                                   |
| Structure with<br>Other Compounds | Fixed Solid<br>Crystals                    | Random Close<br>Arrangement                  | No Structure                                                |
| Electronegativity<br>Differences  | 1.70+                                      | 0.41-1.65                                    | 0.0-0.40                                                    |
| Bond Strength                     | Strong                                     | Inter: Moderate<br>Intra: Weak               | Inter: Weak<br>Intra: Weak                                  |
| Properties of<br>Compounds        | Conducts Electricity<br>High Melting Point | Dissolves Ions;<br>Moderate Melting<br>Point | Does not mix with<br>with polar cmpds;<br>Low Melting Point |



|                      | Ele             | How do w<br>ectro | n Do          | molecular s<br>Dt Dia | tructures?   | ms             |                     |
|----------------------|-----------------|-------------------|---------------|-----------------------|--------------|----------------|---------------------|
|                      |                 | (L                | .ewis         | s Dot                 | s)           |                |                     |
| HYDROGEN<br>1<br>H • | El              | PER<br>EN         |               |                       | 1-2          | E<br>20        | HELIUM<br>2<br>He · |
| LITHIUM              | BERRYLLIUM      | BORON<br>5        | CARBON<br>6   | NITROGEN<br>7         | OXYGEN<br>8  | PLOURINE<br>9  | NEON<br>10          |
| Li ·                 | Be.             | ۰ġ۰               | ۰¢۰           | ٠Ņ                    | ٠Ö           | ÷Ë             | ۰Ŋe                 |
| SODIUM<br>11         | MAGNESIUM<br>12 | ALUMINUM<br>13    | SILICON<br>14 | PHOSPHORUS<br>15      | SULFUR<br>16 | CHLORINE<br>17 | ARGON<br>18         |
| Na <sup>.</sup>      | Mg∙             | ۰Å                | ·Si           | ٠Þ٠                   | ٠Ş٠          | ٠Ü             | ٠Är٠                |
| POTASSIUM<br>19      | CALCIUM<br>20   |                   |               |                       |              |                |                     |
| К.                   | Ċa ·            |                   |               |                       |              |                |                     |



## How do we diagram molecular structures? Steps for Writing Lewis Dots

 Obtain the sum of the valence electrons from all of the atoms. Do not worry about keeping track of which electrons come from which atoms. It is the total number of valence electrons that is important.

# How do we diagram molecular structures? Steps for Writing Lewis Dots

 Use one pair of electrons to form a bond between each pair of bound atoms. For convenience, a line (instead of a pair of dots) is often used to indicate each pair of bonding electrons.

# How do we diagram molecular structures? Steps for Writing Lewis Dots

 Arrange the remaining electrons to satisfy the duet rule for hydrogen and the octet rule for each second-row element. (Ex. SO<sub>4</sub><sup>2-</sup>; NH<sub>4</sub><sup>1+</sup>)

# How do we diagram molecular structures? Multiple Bonds

- Lone Pairs: Pair of Electrons that are not involved in bonding
- Single bonds: Involve two atoms sharing one pair of electrons
- Double Bond: Involves two atoms sharing two pairs of electrons (O<sub>2</sub>)
- Triple Bond: Involves two atoms sharing three pairs of electrons (CN<sup>-</sup>)

| E                | How do we do | diagram molecula<br>s (Singl | r structures?<br>e Bonds | 5)                    |
|------------------|--------------|------------------------------|--------------------------|-----------------------|
| Formula          | Atoms        | Valence<br>Electrons         | Structure w/<br>Dots     | Structure w/<br>Bonds |
| CH <sub>4</sub>  |              |                              |                          |                       |
| NH <sub>3</sub>  |              |                              |                          |                       |
| H <sub>2</sub> O |              |                              |                          |                       |





|                 | How do we o | diagram molecula     | r structures?        |                       |
|-----------------|-------------|----------------------|----------------------|-----------------------|
| Examp           | oles (Do    | uble &               | Triple E             | Bonds)                |
| Formula         | Atoms       | Valence<br>Electrons | Structure w/<br>Dots | Structure w/<br>Bonds |
| 0 <sub>2</sub>  |             |                      |                      |                       |
| CO <sub>2</sub> |             |                      |                      |                       |
| N <sub>2</sub>  |             |                      |                      |                       |



| How de         | uus diagram malagular stru  | eturos 2     |
|----------------|-----------------------------|--------------|
| HOW UC         | o we diagram molecular stru | clules       |
| Bo             | and Summa                   | rv           |
|                |                             | ' y          |
| (a             | dd to page                  | 9)           |
| Turne of Dourd | Numerie en ef               | Numerican of |
| iype of Bond   | Number of                   | Number of    |
|                | electrons                   | lines        |
| Single         | 2                           | 1            |
| Single         | -                           | -            |
|                |                             |              |
| Double         | 4                           | 2            |
|                |                             |              |
| Triplo         | 6                           | 2            |
| Inple          | 0                           | 3            |
|                |                             |              |
|                |                             |              |
|                |                             |              |



| <b>Polyatomic Ions</b> |
|------------------------|
|------------------------|

How do we diagram molecular structures?

## How do we diagram molecular structures? Rules for Polyatomic Ion Structures

- 1. Sum valence electrons. [Subtract + , Add -]
- 2. Create single bonds between the atoms.
- 3. Arrange the remaining electrons to satisfy octet/ duet rules <u>and</u> valence electrons.
- 4. Double Check
- 5. Bracket the structure and list the charge.

## How do we diagram molecular structures? Delocalization of Electrons

• Electrons are not associated with 1 atom or bond.

# How do we diagram molecular structures? Polyatomic lons

A group of covalently bonded atoms with an overall charge.

# How do we diagram molecular structures?

### Resonance

- Resonance: Having more than one Lewis structure that can be drawn for the molecule.
- Examples: CO<sub>2</sub>
- Resonance structures
  - The individual resonance forms.
  - Separated by a double headed arrow

# How do we diagram molecular structures? Examples

- Hydroxide
- Ammonium
- Carbonate
- Nitrate









# Resonance

How do we diagram molecular structures?

Bonding that cannot be represented by a single Lewis Structure





#### How do we diagram molecular structures?

### Other Resonance Examples

Some regular molecules (without a charge) also exhibit resonance because they resist their normal Lewis Structure.

O<sub>3</sub> (cannot form regular structure due to angles)

SO<sub>2</sub> (same as above)

# How do we diagram molecular structures? **Practice Lewis Structures**

#### Polyatomic:

Regular:

- 1. Cyanide

- 4. F<sub>2</sub> 5. HCN
- 2. Phosphate 3. Nitrite (2)
  - 6. C<sub>2</sub>H<sub>4</sub>

## How do I determine the geometry of a molecule using VSEPR theory? $\label{eq:VSEPR} VSEPR$

- Valence Shell Electron Pair Repulsion
- Used to predict the shapes and polarities of molecules
- Molecular shapes are predicted based on the fact that electron pairs (bonding and nonbonding) arrange themselves to be as far apart as possible in order to minimize repulsions.

| How do I        | determine the ge   | ometry of a mole                   | cule using VSEPR                       | theory?           |
|-----------------|--------------------|------------------------------------|----------------------------------------|-------------------|
|                 |                    | VSEPR                              |                                        |                   |
| Name            | Shape              | Atoms Bonded<br>to Central<br>Atom | Lone Pairs of<br>e- on Central<br>Atom | Example           |
| H <sub>2</sub>  | Linear<br>Diatomic | N/A                                | N/A                                    | н-н               |
| Cl <sub>2</sub> | Linear<br>Diatomic | N/A                                | N/A                                    | <br>:Cl – Cl:<br> |



| How do I                                                  | determine the ge    | ometry of a mole                   | cule using VSEPR                       | theory?            |
|-----------------------------------------------------------|---------------------|------------------------------------|----------------------------------------|--------------------|
| Name                                                      | Shape               | Atoms Bonded<br>to Central<br>Atom | Lone Pairs of<br>e- on Central<br>Atom | Example            |
| BeF <sub>2</sub><br>*does not<br>follow the<br>octet rule | Linear<br>Triatomic | 2                                  | 0                                      | <br>:F—Be—F:<br>   |
| H <sub>2</sub> O                                          | Angular or<br>Bent  | 2                                  | 2                                      | <br>H—О:<br>I<br>H |



| How do I                                                 | determine the ge      | ometry of a mole                   | cule using VSEPR                       | theory?                           |
|----------------------------------------------------------|-----------------------|------------------------------------|----------------------------------------|-----------------------------------|
|                                                          |                       | VSEPR                              |                                        |                                   |
| Name                                                     | Shape                 | Atoms Bonded<br>to Central<br>Atom | Lone Pairs of<br>e- on Central<br>Atom | Example                           |
| BH <sub>3</sub><br>*does not<br>follow the<br>octet rule | Trigonal Planar       | 3                                  | 0                                      | н н<br>\ <sub>в</sub> /<br> <br>н |
| NH <sub>3</sub>                                          | Trigonal<br>Pyramidal | 3                                  | 1                                      | <br>H–N–H<br>I<br>H               |



| How do I | determine the ge                                                                     | ometry of a mole          | cule using VSEPR | theory?   |  |  |  |
|----------|--------------------------------------------------------------------------------------|---------------------------|------------------|-----------|--|--|--|
|          |                                                                                      | VSEPR                     |                  |           |  |  |  |
| Name     | Name Shape Atoms Bonded Lone Pairs of<br>to Central e- on Central Examp<br>Atom Atom |                           |                  |           |  |  |  |
| CH4      | Tetrahedral                                                                          | 4                         | 0                | See below |  |  |  |
|          |                                                                                      | н<br> <br>н-с-н<br> <br>н |                  |           |  |  |  |







| How do I                                                 | determine the ge | ometry of a mole                   | cule using VSEPR                       | theory?   |
|----------------------------------------------------------|------------------|------------------------------------|----------------------------------------|-----------|
|                                                          |                  | VSEPR                              |                                        |           |
| Name                                                     | Shape            | Atoms Bonded<br>to Central<br>Atom | Lone Pairs of<br>e- on Central<br>Atom | Example   |
| SF <sub>6</sub><br>*does not<br>follow the<br>octet rule | Octahedral 6     |                                    | 0                                      | See below |
|                                                          | F                | 90° F                              | F                                      |           |

| _ |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
| _ |  |  |  |  |

# What forces hold molecules together?

## Intermolecular Forces

- 3 Types of Intermolecular Forces:
- London Dispersion
- Dipole Dipole
- Hydrogen Bonding

### What forces hold molecules together? Computer Lab: Intermolecular Forces

· Go to

https://www.wisc-online.com/ LearningContent/gch6804/index.html Read each screen and follow the directions where appropriate.

• Answer the questions on the screens in your packet.

# What forces hold molecules together?

- London Dispersion: Result from the electrons in an atom or molecule being unevenly distributed.
- Dipole-Dipole: Results from molecules that have an uneven distribution of charge when (1) the electronegatives are different and (2) the molecule is unsymmetrical.
- Hydrogen Bonding: Results from molecules that have hydrogen bonded to a more electronegative element (N, O, F)





| VSEPR           |                    |                    |                                       |                                            |                    |  |
|-----------------|--------------------|--------------------|---------------------------------------|--------------------------------------------|--------------------|--|
| Name            | Shape              | Number of<br>bonds | Atoms<br>Bonded to<br>Central<br>Atom | Lone Pairs<br>onf e- on<br>Central<br>Atom | Lewis<br>Structure |  |
| H <sub>2</sub>  | Linear<br>Diatomic | 1                  | N/A                                   | N/A                                        | н-н                |  |
| Cl <sub>2</sub> | Linear<br>Diatomic | 1                  | N/A                                   | N/A                                        | <br>:Cl – Cl:<br>  |  |



| VSEPR                                                     |                     |                    |                                       |                                           |                    |  |
|-----------------------------------------------------------|---------------------|--------------------|---------------------------------------|-------------------------------------------|--------------------|--|
| Name                                                      | Shape               | Number of<br>bonds | Atoms<br>Bonded to<br>Central<br>Atom | Lone Pairs<br>of e- on<br>Central<br>Atom | Lewis<br>Structure |  |
| BeF <sub>2</sub><br>*does not<br>follow the<br>octet rule | Linear<br>Triatomic | 2                  | 2                                     | 0                                         | <br>:F-Be-F:<br>   |  |
| H <sub>2</sub> O                                          | Angular or<br>Bent  | 2                  | 2                                     | 2                                         | <br>н_о:<br>І<br>н |  |



| VSEPR                                                    |                       |                    |                                       |                                            |                                   |  |
|----------------------------------------------------------|-----------------------|--------------------|---------------------------------------|--------------------------------------------|-----------------------------------|--|
| Name                                                     | Shape                 | Number of<br>bonds | Atoms<br>Bonded to<br>Central<br>Atom | Lone Pairs<br>onf e- on<br>Central<br>Atom | Lewis<br>Structure                |  |
| BH <sub>3</sub><br>*does not<br>follow the<br>octet rule | Trigonal<br>Planar    | 3                  | 3                                     | 0                                          | н н<br>\ <sub>в</sub> /<br> <br>н |  |
| NH3                                                      | Trigonal<br>Pyramidal | 3                  | 3                                     | 1                                          | <br>H–N–H<br> <br>H               |  |



| VSEPR                                    |             |                    |                                       |                                           |                    |  |  |
|------------------------------------------|-------------|--------------------|---------------------------------------|-------------------------------------------|--------------------|--|--|
| Name                                     | Shape       | Number of<br>bonds | Atoms<br>Bonded to<br>Central<br>Atom | Lone Pairs<br>of e- on<br>Central<br>Atom | Lewis<br>Structure |  |  |
| CH₄                                      | Tetrahedral | 4                  | 4                                     | 0                                         | See below          |  |  |
| н<br> <br> <br> <br> <br> <br> <br> <br> |             |                    |                                       |                                           |                    |  |  |











| VSEPR                                                    |            |                    |                                       |                                           |                                 |  |  |
|----------------------------------------------------------|------------|--------------------|---------------------------------------|-------------------------------------------|---------------------------------|--|--|
| Name                                                     | Shape      | Number of<br>bonds | Atoms<br>Bonded to<br>Central<br>Atom | Lone Pairs<br>of e- on<br>Central<br>Atom | Lewis<br>Structure/<br>Geometry |  |  |
| SF <sub>6</sub><br>*does not<br>follow the<br>octet rule | Octahedral | 6                  | 6                                     | 0                                         | See below                       |  |  |
|                                                          |            | F                  | F                                     |                                           |                                 |  |  |



