#10 Bonding Quantitative Chemistry

Student Learning Map

Unit EQ: What forces hold atoms together?

Key Learning: Bonds are the interaction of electrons between atoms.

1. Types of Bonds	2. Molecular Structures	3. Intermolecular Forces
	LESSON ESSENTIAL QUESTIONS:	
a. What are ionic bonds, and how are they formed?b. What are polar and nonpolar covalent bonds, and how are they formed?	a. How do we diagram molecular structures?b. How do I determine the geometry of a molecule using VSEPR theory?	What forces hold molecules together?
T	 ESSON ESSENTIAL VOCABILLARY	V•
	ESSON ESSENTIAL VOCADULAR	
Ionic Bond Polar Covalent Bond Nonpolar Covalent Bond Electronegativity Dipole Moment	Lewis Structure Single Bond Double Bond Triple Bond Resonance Valence Shell Electron Pair Repulsion Theory (VSEPR) - Linear - Bent - Trigonal Planar - Trigonal Planar - Trigonal Pyramidal - Tetrahedral - Trigonal Bipyramidal - Octahedral	London Dispersion Forces Dipole-Dipole Attraction Hydrogen Bonding

UNIT CONCEPT:

1a. Ionic Bonds <u>EO</u>: What are ionic bonds, and how are they formed?

Computer Lab: Ionic Bonds

Go to http://www.pbslearningmedia.org/a	<u>sset/lsps07_int_ionicbo</u>	onding/ (or Google Search:
"ionic bonds online activity" to find		
http://www.pbslearningmedia.org/resourc	e/lsps07.sci.phys.matte	r.ionicbonding/ionic-bonding/).
Read each screen and follow the direction questions on the following screens:	as where appropriate. Y	You will also need to answer the
#1 Ionic bonds form between	and involve the	of electrons.
#5 In order to build an ionic compound th	at will stick together, y	ou'll need both a
ion and	l a	ion.
#6 The positive ion is usually a		
#7 The negative ion is usually a		
#12 The two ions are held together by the		
#22 What is the formula for the compoun	d on this screen?	
#24 What is the number of Ca ions?	What is the numbe	er of F ions?
#25 What is the formula for the compoun	d on this screen?	
Packed Sphere Structures -		
Draw at least 4 cations for each structure	2.	

NaCl

 K_2S

<u>1b. Covalent Bonds</u> <u>EO</u>: What are polar and nonpolar covalent bonds, and how are they formed?

Computer I ab. Covalent Bonds

	Compi	uter Lad: Covalent B	onas
Go to http://www.pbslearr	ningmedia.	org/asset/lsps07_int_cova	lentbond/ (or Google Search:
"covalent bonds online act	tivity" to fi	nd	
https://witf.pbslearningmedia	a.org/resour	ce/lsps07.sci.phys.matter.co	valentbond/covalent-bonding/).
Read each screen and follo	ow the dire	ctions where appropriate.	You will also need to answer the
questions on the following	g screens:		
#1 A covalent bond is a bo	ond that for	rms when atoms are	electrons.
#3 Answer the questions of	on this scree	en.	
1			
1)			
2)			
#9 In a covalent bond, the	atoms are	not really	electrons as much as they
are	0	ver them.	
#11 What types of elemen	its form cov	valent bonds?	
#12 Covalent bonds will f	orm betwee	en two	Each of the nonmetal
atoms will have a s	strong attra	ction for the other atom's	, but
will also tend to he	old onto its	own	
#24 What is the weakest t	vpe of bond	d? (Circle one.)	
	J 1		
Single Dou	uble	Triple	
What is the strongest	type of bo	nd? (Circle one.)	
Single Dou	uble	Triple	

#25 STOP HERE.

Compare / Contrast Ionic and Covalent?

Definition:			
It is a measure of how	an atom	is for electrons.	
Electronegativity Differ	<u>ences</u> can be used to determin	ne the type of bond.	
IONIC	POLAR COVALENT	NONPOLAR COVALENT	

Electronegativity

Identify the type of bond that would occur between each of the following atoms:

1)	Na-Cl	5)	С–О
2)	0–0	6)	К-О
3)	O–S	7)	N–H
4)	Р–Н	8)	Mg–F

Dipole Moments for Polar Covalent Molecules

Examples:

Water

Compare / Contrast Polar and Nonpolar Covalent Bonds?

REVIEW

Bonds involve _____.

Types of Bonds

	Ionic	Polar	Nonpolar
		Covalent	Covalent
Electrons			
Elements			
Structure			
Electronegativity Differences			
Bond Strength			
Properties of Compounds			

2a. Molecular (Covalent) Structures <u>EO</u>: How do we diagram molecular structures?

Electron Dot Diagrams

A. Rules for Drawing Lewis Structures (Using Electron Dot Diagrams)

Terms
1. Lone Pair –
2. Single Bond –
3. Double Bond –
4. Triple Bond –

2a. Molecular (Covalent) Structures (cont.)

Examples (Single Bonds):

Formula	Atoms	Valence Electrons	Structure	Structure w/ Bonds

2a. Molecular (Covalent) Structures (cont.)

Bond Length	Bond Energy

Examples (Double & Triple Bonds):

Formula	Atoms	Valence Electrons	Structure	Structure w/ Bonds

2a. Molecular (Covalent) Structures

B. Rules for Drawing Lewis Structures (Polyatomic Ions & Resonance)

Terms

- 1. Delocalization of Electrons -
- 2. Polyatomic Ion –

3. Resonance –

Examples:

*Other Resonance Examples: O*₃

 SO_2

2b. VSEPR

EQ: How do I determine the geometry of a molecule using VSEPR Theory?

Notes:

Geometries:

Name	Shape	Atoms Bonded to Central Atom	Lone Pairs of e- on Central Atom	Example
1.				
2.				
3.				
4.				
5.				
6.				
7.				

3. Intermolecular Forces

EO: What forces hold MOLECULES together?

3 TYPES OF INTERMOLECULAR FORCES

London Dispersion	Dipole-Dipole	<u>Hydrogen Bonding</u>

Computer Lab: Intermolecular Forces

Go to <u>https://www.wisc-online.com/LearningContent/gch6804/index.html</u> (or Google Search: "intermolecular forces wisc online" to find <u>https://www.wisc-online.com/learn/natural-science/chemistry/gch6804/intermolecular-forces</u>). Read each screen and follow the directions where appropriate. You will also need to answer the questions on the following screens:

#2 The strongest intermolecular forces between molecules are	e less than	as strong	
as the bonds between atoms.			
Intermolecular forces cause a substance to form	&	phases	

#3 Dipole-dipole forces result from the _____

#4 London Dispersion Forces: The _______ of electrons causes an instantaneous dipole. There is an attraction between these temporary dipoles.

#5 London Disperson Forces: *Every* and experiences London forces. The strength of these forces increases as the atomic or molecular weight increases.

<u>3. Intermolecular Forces (cont.)</u>

#8 Hydrogen Bonding occurs between molecules that have a hydrogen atom bonded to a more

electronegative _____, or _____ atom. Hydrogen bonds are _____

than London and dipole-dipole forces, but weaker than covalent bonds.

Problems:

- 1. Using your Periodic Table of Electronegativities, identify the type of bonding (polar or nonpolar) that occurs between the following molecules.
- 2. Using the Bond Type, check the boxes of the forces that occur between these molecules.

	Intermolecular Forces			
Molecule	Bond Type (PC or NPC)	LD very weak	D-D weak	HB moderate
H ₂				
H ₂ O				
SO_2				
HF				
CI4				
PCl ₃				
ClBr				
NH ₃				
BH ₃				
SeO ₂				

4 1

3. Which of the compounds above would you expect to have the HIGHEST boiling points?

REVIEW