#3 Atomic Structure Quantitative Chemistry

Student Learning Map

Unit EQ: What are atoms, and why is their structure significant?

Key Learning: Knowing the parts of the atom and how it is assembled is critical to understanding the structure of matter.

1. Models of the Atom	3. Ions						
	LESSON ESSENTIAL QUESTIONS:						
a. What do we know about atoms and atomic theory?b. What events led up to the development of modern atomic theory?	Which subatomic particle is responsible for isotopes, and how are isotopes connected to the real world?	Which subatomic particle is responsible for the formation of ions, and how do ions bond in a specific ratio?					
LL	ESSON ESSENTIAL VOCABULAR	Y:					
Proton	Isotopes	Ion					
Neutron	Carbon-14 Dating	Cation					
Electron		Anion					
Nucleus							
Atomic Number							
Mass Number							
Laws:							
Conservation of Mass							
Constant Composition							
Multiple Proportions							

UNIT CONCEPT:

1a. Introduction to Elements & Atoms

EQ: What do we know about atoms and atomic theory?

I. What is Matter Composed Of?

A	(400 BC)
	4 elements:
B	(Middle Ages)
	•
C	(1627-1691)
	Science should be firmly grounded in
	• An is something that cannot be broken down into simpler substances.
	• There are probably

1a. Introduction to Elements & Atoms (cont.)

II. Elements

A. Abundant Pure Elements in the Atmosphere

B. Abundant Elements By Mass

Human Body	Earth's Atmosphere	Earth's Oceans	Earth's Crust

C. Trace Elements

III. Laws of Matter

A. Law of Conservation of Mass

_____ can be neither ______ nor _____.

 B. Law of Definite Proportion (Constant Composition) A given compound <u>always</u> contains <u>exactly</u> the same proportion of elements by mass. Examples:

C. Law of Multiple Proportions

When two elements form a series of compounds, the ratios of the masses of the second element that combine with one gram of the first element can always be reduced to small whole numbers.

Example:

1b. Models of the Atom

EQ: What events led up to the development of modern atomic theory?

Scientists	Illustration
1. John Dalton – 1800s Atomic Theor	y (5 points)
1.	
2.	
2	
э.	
4.	
5.	
2 II Thomson 1800s	
2. 55 1 1011501 - 18905	
Discovered thef	rom the use of Cathode
Ray Tubes.	
Along with	
he believed that the negative electrons were stu	ck in a positive sphere.
[Plum Pudding Model]	
3. Ernest Rutherford – 1911	
Discovered the	
from the Gold Foil Experiment.	
He determined that the store was mostly	
with a dense, positive center.	
4. Niels Bohr – 1913	
Believed that	_ moved around the
like planets arc	ound the sun.
[Planetary / Solar System Model]	

<u>1b. Models of the Atom (cont.)</u>

5. James Chadwick – 1932	
Discovered the the nucleus, along with the proton).	_(neutral particle in
The Current Model: Quantum Mo	echanical Model
<i>Electrons exist in</i> regions) around the nucleus.	_(3D probability

Parts of the Atom

	Proton	Neutron	Electron
1. Location			
2. Charge			
3. Mass			
4. Other Info			

<u>1b. Models of the Atom (cont.)</u>

Bohr Models

Although the Bohr model is not the current model, it provides a foundation for our understanding of the quantum mechanical model.

Examples:

Li	В
F	Na

Date:

2. Isotopes

<u>EQ</u>: Which subatomic particle is responsible for isotopes, and how are isotopes connected to the real world?

Terms:

Isotopes -

Atomic Number (Z) –

Mass Number (A) –

Atomic Symbol:

Hyphen Name:

Example:

Isotopes of Hydrogen

	Hyphen	Atomic #	Mass #	Protons	Neutrons	Electrons	Symbol
Protium							
Deuterium							
Tritium							

How many protons, neutrons, and electrons are in each the following?

1.

2. 3.

Draw symbols for the following atoms:

1. 2. 3.

2. Isotopes (cont.)

What is the difference between <u>mass number</u> and <u>atomic mass</u>?

What is special about C-14?

<u>3. Ions</u>

<u>EQ</u>: Which subatomic particle is responsible for the formation of ions, and how do ions bond in a specific ratio?

Conductivity Demo:

Illustration:

Terms:

Ion –

Cation -

Anion –

3. Ions (cont.)

Formation of lons

Lithium (Li)	What happens?
Protons =	Protons =
Electrons =	Electrons =
Bohr Model:	Overall Charge =
	Symbol =
	Name =
Fluorine (F)	What happens?
Protons =	Protons =
Electrons =	Electrons =
Bohr Model:	Overall Charge =
	Symbol =
	Name =
Oxygen (O)	What happens?
Protons =	Protons =
Electrons =	Electrons =
Bohr Model:	Overall Charge =
	Symbol =
	Name =

3. Ions (cont.)

Ion & Isotope Chart

Symbol	Atomic #	Mass #	Protons	Neutrons	Electrons
¹⁶ / ₈ O ²⁻					
²³ ₁₁ Na ¹⁺					
	13	27			10
²⁹ ₁₈ Ar					
$^{35}_{17}\text{Cl}^{1-}$					
	9	19			10
${}^{9}_{4}\text{Be}^{2+}$					
		207	82		78
			20	20	18
${}^{31}_{15}\mathbf{P}^{3-}$					
	29	63			27

3. Ions (cont.)

Writing Formulas for Simple Ionic Compounds:

Write the formulas for the binary compounds that would be produced from the following:

a.	K^+ and Cl^-	d.	Si^{4+} and O^{2-}
b.	Mg^{2+} and F^-	e.	Be^{2+} and O^{2-}
c.	Li ⁺ and N ³⁻	f.	Al^{3+} and O^{2-}

REVIEW