Student Learning Map

Unit EQ: What are matter and energy, and how are they important to Chemistry?

Key Learning: The universe is composed of multiple types of matter and energy.

1. Properties of Matter	2. Physical & Chemical Changes	3. Energy
	LESSON ESSENTIAL QUESTION	IS:
How can we describe and classify different types of matter?	How do I differentiate between physical and chemical changes?	How do I solve problems with energy, temperature, mass, and specific heat capacity?
	LESSON ESSENTIAL VOCABULA	RY:
Matter Intensive Property Extensive Property Solid Liquid Gas Plasma Physical Property Chemical Property Pure Substance Element Compound Homogeneous Mixture Heterogeneous Mixture	Condensation Freezing Melting Boiling Evaporation Sublimation Deposition Precipitate Endothermic Exothermic Distillation Filtration Decant	Energy Heat Calorie Joule Specific Heat Capacity Celsius Fahrenheit Kelvin

UNIT CONCEPT:

PROPERTIES OF MATTER

<u>EO</u>: How can we describe and classify different types of matter?

<u>EO</u>: How will I define, identify and differentiate between a physical and a chemical changes?

<u>EO</u>: How do I solve problems with energy, temperature, mass, and specific heat capacity?

A. **Properties of Matter:**

1.

2.

B. Phases of Matter:

1.

a.

b.

2.

a.

b.

3.

a.

b.

4.

Physical Properties Of Matter:

Chemical Properties Of Matter:

The properties of a substance can be divided up into two basic kinds:

Intensive Properties:

Extensive Properties:

C. Changes in Matter:

1.

2.

Physical Changes in states of matter

1.	solid \rightarrow liquid =	-
	example:	
2.	liquid \rightarrow solid =	_
	example:	
3.	liquid \rightarrow gas =	
	example:	
4.	gas \rightarrow liquid =	
	example:	
5.	solid \rightarrow gas =	
	example:	
6.	gas \rightarrow solid =	
	example:	
7.	gas \rightarrow plasma =	
8.	plasma \rightarrow gas =	

Chemical Changes in states of matter:

Also called _____

Demos:

Example 1: Paper

Example 2: NaCl + AgNO₃ \rightarrow NaNO₃ + AgCl

Example 3: Na + H₂O \rightarrow NaOH + H₂

II. Physica	&	Chemical	Changes:	Identify your own	examples below.
-------------	---	----------	-----------------	-------------------	-----------------

•	Physical	Chemical
1. Environment		
2. Kitchen		
3. Hair Salon		

HW: Problems: 1-12, 18 (pages 69-70)

Compounds and Mixtures

	Compounds	Mixtures
1. Combination		
2. Properties		
3. Composition		

Pure Substances and Mixtures Mini-Lab

Use the word bank below to identify the items in the test tubes. Identify each substance as a pure substance or mixture, and then identify each as an element, compound, homogeneous mixture, or heterogeneous mixture.

Identity of Substance	Pure Substance (PS) or Mixture? (MIX)	Element (E), Compound (C), Homogeneous Mixture (HOM), or Heterogeneous Mixture (HET)?
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		

Word bank:

Air	Carbon (graphite)	Muddy Water	Seasoning Mix
Aluminum	Chocolate	Oil & Water	Soda
Baking Soda	Copper	Orange Drink	Sugar
Beads	Copper Sulfate	Pistachios	Sulfur
Brass	Lead	Salt	Water

2. Physical & Chemical Changes (cont.)

D. Separation Techniques

← Matter →

How would you separate a mixture of salt and sand? Answer the questions below.

- a. What substance did you separate first? How did you do it?
- b. What substance did you separate next? How did you do it?
- c. How did you separate the final two substances?

Notes:

3. Energy

A. Temperature

In the laboratory, temperatures are usually measured in ______.

Use temperature conversions to complete the blanks in the following table.

Example:	Celsius	Fahrenheit	Kelvin
1.	22°C		
Room Temp			
$2.^{\circ}F \rightarrow^{\circ}C$		75°F	
$\rightarrow K$		/51	
3. Body			310 K
Temperature			510 1
4. ° $F \rightarrow ^{\circ}C$		24.5°F	
$\rightarrow K$		24.5 1	
5. Below			233 K
Freezing			255 K
6. Boiling	100°C		
Point	100 C		

3. Energy (cont.)

B. Energy

* Energy Conversions:

calorie –

1. Convert 500. joules to calories.

500. J x
$$\frac{1 \text{ cal}}{4.184 \text{ J}}$$
 = 120. cal

2. Convert 1600 calories to kilojoules.

1600 calories x $\frac{4.184 \text{ J}}{1 \text{ cal}}$ x $\frac{1 \text{ kJ}}{1000 \text{ J}}$ = 6.7 kJ

3. For breakfast, you eat a bowl of Lucky Charms (Cal = 110) with half a cup of 1% milk (Cal = 55). How many joules is this?
110 Cal
<u>+55 Cal</u>
165 Cal x ^{1000 cal}/_{1 Cal} x ^{4.184 J}/_{1 cal} = 690000 J

3. Energy (cont.)

* Specific Heat Capacity:

Which has a higher specific heat capacity: iron or water? Why?

Def. (Specific Heat Capacity):

 $s_{H2O} = s_{Fe} = s_{Al} =$

* Energy Problems:

Show your work and use significant figures!

1. Calculate the energy required (in joules) to raise the temperature of 4.3 grams of liquid mercury by 5.6°C. (Specific heat capacity of Hg is 0.14 J/g°C.)

 $Q = s m \Delta T$ $Q = \left(0.14 \frac{J}{g^{\circ}C}\right) (4.3 g) (5.6 \circ C)$ Q = 3.4 J

2. How much energy (in joules) is required to heat 24 grams of carbon (see pg. 13) from 23.6°C to 54.2°C?

$$Q = s m (T_f - T_i)$$
$$Q = \left(0.71 \frac{J}{g^{\circ}C}\right) (24 g) (54.2 \circ C - 23.6 \circ C)$$
$$Q = 520 J$$

3. Energy (cont.)

<u>Specific Heat Capacities (J/g°C)</u>				
Aluminum = 0.89	Carbon = 0.71	Silver = 0.24	Water =	

3. A sample of water requires 2.4 kilojoules to heat it from 23.4°C to 46.9°C. What is the mass of the water?

2.4 kJ x
$$\frac{1000 \text{ J}}{1 \text{ kJ}} = \underbrace{24\overline{00}}_{\to 2 \text{ sig figs}} \text{ J}$$

m = $\frac{Q}{s (T_f - T_i)} = \frac{(24\overline{00} \text{ J})}{(4.184 \text{ } \frac{\text{J}}{\text{g}^{\circ}\text{C}})} \underbrace{(46.9 \text{ }^{\circ}\text{C} - 23.4 \text{ }^{\circ}\text{C})}_{\to 3 \text{ sig figs rounded to tenths place}}$
m = 24 g

4. If 45.8 joules is applied to 0.25 pounds of silver at 25°C, what will be the new temperature?

0.25 pounds x
$$\frac{454 \text{ g}}{1 \text{ lb}} = \underbrace{113}_{\to 2 \text{ sig figs}} \text{g}$$

 $T_{f} = \frac{Q}{\text{s m}} + T_{i} = \frac{(26.69 \text{ J})}{\left(0.24 \frac{\text{J}}{\text{g}^{\circ}\text{C}}\right)(113 \text{ g})} + 25 \text{ °C}$
 $T_{f} = 27^{\circ}\text{C}$

5. Calculate the specific heat capacity of a substance if it takes 6.38 calories to raise the temperature of 0.253 kilograms from 34.0°C to 39.8°C.

6.38 calories x
$$\frac{4.184 \text{ J}}{1 \text{ cal}} = \underbrace{26.69}_{\to 3 \text{ sig figs}} \text{ J}; 0.253 \text{ kg x } \frac{1000 \text{ g}}{1 \text{ kg}} = \underbrace{253.0}_{\to 3 \text{ sig figs}} \text{ g}$$

s = $\frac{\text{Q}}{\text{m}(\text{T}_{\text{f}} - \text{T}_{\text{i}})} = \frac{(26.69 \text{ J})}{(253.0 \text{ g})} \underbrace{(39.8 \text{ }^{\circ}\text{C} - 34.0 \text{ }^{\circ}\text{C})}_{\to 2 \text{ sig figs rounded to tenths place}}$
s = $0.018 \frac{\text{J}}{\text{g}^{\circ}\text{C}}$

6. You place an aluminum pan in the oven (mass = 0.30 kg), and its temperature increases from 72°F to 250°F. How many joules of energy have you added?

°C =
$$\frac{5}{9}(-^{\circ}F - 32) = \frac{5}{9}(250^{\circ}F - 32) = 121.1^{\circ}C$$

°C = $\frac{5}{9}(-^{\circ}F - 32) = \frac{5}{9}(72^{\circ}F - 32) = 22.2^{\circ}C$
0.30 kg x $\frac{1000 \text{ g}}{1 \text{ kg}} = \underbrace{300}_{\rightarrow 2 \text{ sig figs}} \text{g}$
Q = s m(T_f - T_i) = $\left(0.89 \frac{\text{J}}{\text{g}^{\circ}\text{C}}\right)(300. \text{g})\underbrace{(121.1 ^{\circ}C - 22.2 ^{\circ}C)}_{\rightarrow 3 \text{ sig figs rounded to tenths place}}$
m = 26000 J

13

Class Review Questions:

- 1. How would you separate the mixture of sand and salt?
 - Add water to dissolve the salt
 - Pour the mixture through filter paper to collect the sand
 - Let the water evaporate (leaving the salt by itself).
- How many joules does a meal at Five Guys contain? Bacon Cheeseburger: 920 calories Regular Fries: 953 calories 24 oz Coca-Cola: 252 calories

```
920. cal

953 cal

+252 cal

2125 calories x \frac{4.184 \text{ J}}{1 \text{ cal}} = 8891 \text{ J}
```

3. If Aldrich Killian adds 3 000 000. joules of energy are applied to *Iron Man*'s 200. lb suit, what would be the new temperature? The suit initial temperature is Tony's body temperature.

200. pounds x
$$\frac{454 \text{ g}}{1 \text{ lb}} = \underbrace{908\overline{00}}_{\to 3 \text{ sig figs}} g$$

 $T_{f} = \frac{Q}{s \text{ m}} + T_{i} = \frac{(3\ 000\ 000.\text{ J})}{(0.45\ \frac{J}{g^{\circ}C})(908\overline{0}0\ g)} + 37\ ^{\circ}C$
 $T_{f} = 110^{\circ}C$

Review Notes (Optional):