\#2 Matter \& Energy Quantitative Chemistry

Student Learning Map

Unit EQ: What are matter and energy, and how are they important to Chemistry?
Key Learning: The universe is composed of multiple types of matter and energy.

UNIT CONCEPT:

1. Properties of Matter	2. Physical \& Chemical Changes	3. Energy

LESSON ESSENTIAL QUESTIONS:

How can we describe and classify different types of matter?	How do I differentiate between physical and chemical changes?	How do I solve problems with energy, temperature, mass, and specific heat capacity?

LESSON ESSENTIAL VOCABULARY:

Matter	Condensation	Energy
Intensive Property	Freezing	Heat
Extensive Property	Melting	Calorie
Solid	Boiling	Joule
Liquid	Evaporation	Specific Heat Capacity
Gas	Sublimation	Celsius
Plasma	Deposition	Fahrenheit
Physical Property	Precipitate	Kelvin
Chemical Property	Endothermic	
Pure Substance	Exothermic	
Element	Distillation	
Compound	Filtration	
Homogeneous Mixture	Decant	
Heterogeneous Mixture		

PROPERTIES OF MATTER

EQ: How can we describe and classify different types of matter?

EQ: How will I define, identify and differentiate between a physical and a chemical changes?

EQ: How do I solve problems with energy, temperature, mass, and specific heat capacity?

Definition of Matter:

A. Properties of Matter:

1.
2.

B. Phases of Matter:
1.
a.
b.
2.
a.
b.
3.
a.
b.
4.

Physical Properties Of Matter:

Chemical Properties Of Matter:

The properties of a substance can be divided up into two basic kinds: Intensive Properties:

Extensive Properties:

C. Changes in Matter:

1.
2.

Physical Changes in states of matter

1. solid \rightarrow liquid $=$ \qquad
example: \qquad
2. liquid \rightarrow solid $=$ \qquad
example: \qquad
3. liquid \rightarrow gas $=$ \qquad or \qquad
example: \qquad
4. gas \rightarrow liquid $=$ \qquad
example: \qquad
5. solid \rightarrow gas $=$ \qquad
example: \qquad
6. gas \rightarrow solid $=$ \qquad
example: \qquad
7. gas \rightarrow plasma $=$ \qquad
8. plasma \rightarrow gas $=$ \qquad

Chemical Changes in states of matter:

Also called \qquad

Demos:

Example 1: Paper

Example 2: $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$

Example 3: $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$
II. Physical \& Chemical Changes: Identify your own examples below.

	Physical	Chemical
1. Environment		
2. Kitchen		
3. Hair Salon		

D. Types Of Matter:

(1) Pure Substance

Definition and examples:

Definition and examples:

Definition and examples:

Compounds and Mixtures

	Compounds	Mixtures
1. Combination		
2. Properties		
3. Composition		

Pure Substances and Mixtures Mini-Lab

Use the word bank below to identify the items in the test tubes.
Identify each substance as a pure substance or mixture, and then identify each as an element, compound, homogeneous mixture, or heterogeneous mixture.

Identity of Substance	Pure Substance (PS) or Mixture? (MIX)	Element (E), Compound (C), Homogeneus Mixture (HOM), or Heterogeneous Mixture (HET)?
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		

Word bank:

Air	Carbon (graphite)	Muddy Water	Seasoning Mix
Aluminum	Chocolate	Oil \& Water	Soda
Baking Soda	Copper	Orange Drink	Sugar
Beads	Copper Sulfate	Pistachios	Sulfur
Brass	Lead	Salt	Water

2. Physical \& Chemical Changes (cont.)

D. Separation Techniques

$$
\leftarrow \text { Matter } \rightarrow
$$

How would you separate a mixture of salt and sand? Answer the questions below.
a. What substance did you separate first? How did you do it?
b. What substance did you separate next? How did you do it?
c. How did you separate the final two substances?

Notes:

Filtration

Distillation

3. Energy

A. Temperature

In the laboratory, temperatures are usually measured in \qquad .

Conversions:

Fahrenheit

1. Convert $89^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & =\frac{5}{9}\left(-{ }^{\circ} \mathrm{F}-32\right) \\
& =\frac{5}{9}\left(89^{\circ} \mathrm{F}-32\right)=32^{\circ} \mathrm{C}
\end{aligned}
$$

2. Convert $25^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$.

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\frac{9}{5}-{ }^{\circ} \mathrm{C}+32 \\
& =\frac{9}{5}\left(25^{\circ} \mathrm{C}\right)+32=77^{\circ} \mathrm{F}
\end{aligned}
$$

1. Convert 303 K to ${ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & ={ }_{-} \mathrm{K}-273 \\
& =303 \mathrm{~K}-273=30 .{ }^{\circ} \mathrm{C}
\end{aligned}
$$

2. Convert $25^{\circ} \mathrm{C}$ to K .

$$
\begin{aligned}
\mathrm{K} & ={ }_{-}{ }^{\circ} \mathrm{C}+273 \\
& =25^{\circ} \mathrm{C}+273=298 \mathrm{~K}
\end{aligned}
$$

Use temperature conversions to complete the blanks in the following table.

Example:	Celsius	Fahrenheit	Kelvin
1. Room Temp	$22^{\circ} \mathrm{C}$		
$2 .{ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C}$ $\rightarrow \mathrm{K}$		$24.5^{\circ} \mathrm{F}$	310 K
3. Body Temperature		233 K	
$4 .{ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C}$ $\rightarrow \mathrm{K}$	$100^{\circ} \mathrm{C}$		
5. Below Freezing			
6. Boiling Point			

3. Energy (cont.)

B. Energy

* Energy Conversions:

calorie -

1. Convert 500 . joules to calories.

$$
500 . \mathrm{J} \times \frac{1 \mathrm{cal}}{4.184 \mathrm{~J}}=120 . \mathrm{cal}
$$

2. Convert 1600 calories to kilojoules.

1600 calories $\mathrm{x} \frac{4.184 \mathrm{~J}}{1 \mathrm{cal}} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=6.7 \mathrm{~kJ}$
3. For breakfast, you eat a bowl of Lucky Charms $(\mathrm{Cal}=110)$ with half a cup of 1% milk $(\mathrm{Cal}=55)$. How many joules is this?
110 Cal
$+55 \mathrm{Cal} \quad 165 \mathrm{Cal} x \frac{1000 \mathrm{cal}}{1 \mathrm{Cal}} \mathrm{x} \frac{4.184 \mathrm{~J}}{1 \mathrm{cal}}=69 \overline{0} 000 \mathrm{~J}$
165 Cal

3. Energy (cont.)

* Specific Heat Capacity:

Which has a higher specific heat capacity: iron or water? Why?

Def. (Specific Heat Capacity):

$$
\mathbf{S H}_{\mathbf{H} 2 \mathrm{O}}=\quad \mathbf{S}_{\mathrm{Fe}}=\quad \mathbf{S}_{\mathbf{A l}}=
$$

* Energy Problems:

Show your work and use significant figures!

1. Calculate the energy required (in joules) to raise the temperature of 4.3 grams of liquid mercury by $5.6^{\circ} \mathrm{C}$. (Specific heat capacity of Hg is $0.14 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.)

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{s} \mathrm{~m} \Delta \mathrm{~T} \\
& \mathrm{Q}=\left(0.14 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)(4.3 \mathrm{~g})\left(5.6^{\circ} \mathrm{C}\right) \\
& \mathrm{Q}=3.4 \mathrm{~J}
\end{aligned}
$$

2. How much energy (in joules) is required to heat 24 grams of carbon (see pg. 13) from $23.6^{\circ} \mathrm{C}$ to $54.2^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{Q}=\operatorname{sm}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) \\
& \mathrm{Q}=\left(0.71 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)(24 \mathrm{~g})\left(54.2^{\circ} \mathrm{C}-23.6^{\circ} \mathrm{C}\right) \\
& \mathrm{Q}=520 \mathrm{~J}
\end{aligned}
$$

3. Energy (cont.)

Specific Heat Capacities ($\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$)

Aluminum $=0.89 \quad$ Carbon $=0.71 \quad$ Silver $=0.24 \quad$ Water $=$
3. A sample of water requires 2.4 kilojoules to heat it from $23.4^{\circ} \mathrm{C}$ to $46.9^{\circ} \mathrm{C}$. What is the mass of the water?

$$
\begin{aligned}
& 2.4 \mathrm{~kJ} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}=\underbrace{24 \overline{0} 0}_{\rightarrow 2 \text { sig figs }} \mathrm{J} \\
& \mathrm{~m}=\frac{\mathrm{Q}}{\mathrm{~s}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)}=\frac{(24 \overline{0} 0 \mathrm{~J})}{\left(4.184 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right) \underbrace{\left(46.9^{\circ} \mathrm{C}-23.4^{\circ} \mathrm{C}\right)}_{\rightarrow 3 \text { sig figs rounded to tenth p place }}} \\
& \mathrm{m}=24 \mathrm{~g}
\end{aligned}
$$

4. If 45.8 joules is applied to 0.25 pounds of silver at $25^{\circ} \mathrm{C}$, what will be the new temperature?

$$
\begin{aligned}
& 0.25 \text { pounds } x \frac{454 \mathrm{~g}}{1 \mathrm{lb}}=\underbrace{113}_{\rightarrow 2} \mathrm{sig} \text { figs } \\
& \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{Q}}{\mathrm{~s} \mathrm{~m}}+\mathrm{T}_{\mathrm{i}}=\frac{(26.69 \mathrm{~J})}{\left(0.24 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)(113 \mathrm{~g})}+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{f}}=27^{\circ} \mathrm{C}
\end{aligned}
$$

5. Calculate the specific heat capacity of a substance if it takes 6.38 calories to raise the temperature of 0.253 kilograms from $34.0^{\circ} \mathrm{C}$ to $39.8^{\circ} \mathrm{C}$.
6.38 calories $x \frac{4.184 \mathrm{~J}}{1 \mathrm{cal}}=\underbrace{26.69 \mathrm{~J} ; 0.253 \mathrm{~kg} \mathrm{x} \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=\underbrace{253.0}_{\rightarrow 3 \text { sig figs }} \mathrm{g}, ~(, ~}_{\rightarrow 3 \text { sig figs }}$
$\mathrm{s}=\frac{\mathrm{Q}}{\mathrm{m}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)}=\frac{(26.69 \mathrm{~J})}{(253.0 \mathrm{~g}) \underbrace{\left(39 . \circ^{\circ} \mathrm{C}-34.0^{\circ} \mathrm{C}\right)}_{\rightarrow 2 \text { sig figg rounded to tenths place }}}$
$\mathrm{s}=0.018 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}$
6. You place an aluminum pan in the oven (mass $=0.30 \mathrm{~kg}$), and its temperature increases from $72^{\circ} \mathrm{F}$ to $250^{\circ} \mathrm{F}$. How many joules of energy have you added?

$$
\begin{aligned}
& { }^{\circ} \mathrm{C}=\frac{5}{9}\left(-{ }^{\circ} \mathrm{F}-32\right)=\frac{5}{9}\left(250^{\circ} \mathrm{F}-32\right)=121.1^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}=\frac{5}{9}\left(-{ }^{\circ} \mathrm{F}-32\right)=\frac{5}{9}\left(72^{\circ} \mathrm{F}-32\right)=22.2^{\circ} \mathrm{C} \\
& 0.30 \mathrm{~kg} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=\underbrace{300 .}_{\rightarrow 2} \mathrm{~g} \text { sig figs } \\
& \mathrm{Q}=\operatorname{s~m}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=\left(0.89 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}\right)(300 . \mathrm{g}) \underbrace{\left(121.1^{\circ} \mathrm{C}-22.2{ }^{\circ} \mathrm{C}\right)}_{\rightarrow 3 \text { sig figs rounded to tenth p place }} \\
& \mathrm{m}=26000 \mathrm{~J}
\end{aligned}
$$

Class Review Questions:

1. How would you separate the mixture of sand and salt?

- Add water to dissolve the salt
- Pour the mixture through filter paper to collect the sand
- Let the water evaporate (leaving the salt by itself).

2. How many joules does a meal at Five Guys contain?

Bacon Cheeseburger: 920 calories
Regular Fries: 953 calories
24 oz Coca-Cola: 252 calories

$$
\begin{array}{r}
920 . \mathrm{cal} \\
953 \mathrm{cal} \\
+252 \mathrm{cal} \\
\hline 2125 \mathrm{cal}
\end{array} \quad 2125 \text { calories } \mathrm{x} \frac{4.184 \mathrm{~J}}{1 \mathrm{cal}}=8891 \mathrm{~J}
$$

3. If Aldrich Killian adds 3000000 . joules of energy are applied to Iron Man's 200 lb suit, what would be the new temperature? The suit initial temperature is Tony's body temperature.
4. pounds $x \frac{454 \mathrm{~g}}{1 \mathrm{lb}}=\underbrace{908 \overline{0} 0}_{\rightarrow 3 \text { sig figs }} \mathrm{g}$
$T_{f}=\frac{Q}{s m}+T_{i}=\frac{(3000000 . J)}{\left(0.45 \frac{J}{g^{\circ} \mathrm{C}}\right)(908 \overline{0} 0 \mathrm{~g})}+37^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}}=110^{\circ} \mathrm{C}$

Review Notes (Optional):

