\qquad
Physics I Mechanics
Physics II Electricity \& Magnetism

Foundational Mathematics' Skills of Physics

Do not use this packet as scratch paper. Once you have worked out the problems, show your work and final answers in a concise, clear manner in this packet. All concepts from this assessment are algebra, geometry, and pre-calculus concepts that you must know.
\dagger Denotes additional assessments or information for the Physics II E\&M class only.
\dagger Graphing Calculator Recommendation: TI-89

Symbolic Manipulations

I. Equation Derivations

Directions: Using the following 3 equations (1-1, 2-1, \& 3-1), solve for a the specified variable and substitute it into another equation to derive a new equation.

$$
\begin{align*}
& \bar{v}=\frac{x-x_{0}}{t} \tag{1-1}\\
& a=\frac{v-v_{0}}{t} \tag{2-1}\\
& \bar{v}=\frac{v_{0}+v}{2} \tag{3-1}
\end{align*}
$$

1. Solve equation 1-1 for x. This will now be denoted as equation 1-2.
2. Solve equation 2-1 for v. This is equation 2-2.
3. Solve equation 2-1 for v_{0}. This is equation 2-3.
4. Solve equation 2-1 for t. This is equation 2-4.
5. Substitute equation 3-1 directly in for \bar{v} into equation 1-2. This is equation 4-1.
6. Substitute equation 2-2 directly in for v into equation 4-1. This is equation 5-1.
7. Substitute equation 2-3 directly in for v_{0} into equation 4-1. This is equation 6-1.
8. Substitute equation 2-4 directly in for t into equation 4-1. This is equation 7-1.
9. Solve equation 7-1 for v^{2}. This is equation 7-2.
II. Symbolic Manipulation
10. Using the following equations, solve for a in terms of g, m_{1}, m_{2}, μ, and θ.

$$
\begin{gathered}
m_{1} g-T=m_{1} a \\
T-\mu N-m_{2} g \sin \theta=m_{2} a \\
N-m_{2} g \cos \theta=0
\end{gathered}
$$

2. Using the following equations, solve for a in terms of $g, m_{1}, m_{2}, \mu_{1}, \mu_{2}, \theta_{1}$, and θ_{2}.

$$
\begin{gathered}
m_{1} g \sin \theta_{1}-T-\mu_{1} n=m_{1} a \\
n-m_{1} g \cos \theta_{1}=0 \\
T-\mu_{2} N-m_{2} g \sin \theta_{2}=m_{2} a \\
N-m_{2} g \cos \theta_{2}=0
\end{gathered}
$$

3. Using the following equations, solve for μ in terms of θ.

$$
\begin{gathered}
N-m g \cos \theta=0 \\
m g \sin \theta-\mu N=0
\end{gathered}
$$

4. Using the following equations, solve for v in terms of g, r, and θ.

$$
\begin{aligned}
& N \cos \theta-m g=0 \\
& N \sin \theta=m \frac{v^{2}}{r}
\end{aligned}
$$

5. Using the following equations, solve for f in terms of g, m, r, v, and θ.

$$
\begin{gathered}
N \cos \theta-f \sin \theta=m g \\
N \sin \theta+f \cos \theta=m \frac{v^{2}}{r}
\end{gathered}
$$

6. Using the following equations, solve for μ in terms of g, r, v, and θ.

$$
\begin{gathered}
N \cos \theta-\mu N \sin \theta=m g \\
N \sin \theta+\mu N \cos \theta=m \frac{v^{2}}{r}
\end{gathered}
$$

III. Symbolic Reduction

1. For the following equation, set $v=0$ and solve for t.

$$
v=v_{0}+a t
$$

2. For the following equation, set $v_{0}=0$ and solve for a.

$$
v_{0}=v-a t
$$

3. For the following equation, set $v_{0}=0$ and solve for t.

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

4. For the following equation, set $x_{0}=0$ and solve for t.

$$
x=x_{0}+v t-\frac{1}{2} a t^{2}
$$

5. For the following equation, set $x_{0}=0$ and solve for v_{0}.

$$
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
$$

6. For the following equations, set $x_{0}=0, a=0, y_{0}=0$, and solve for θ.

$$
\begin{aligned}
x= & x_{0}+v_{0 x} t+\frac{1}{2} a t^{2} \\
y= & y_{0}+v_{0 y} t-\frac{1}{2} g t^{2} \\
& \tan \theta=\frac{v_{0 y}}{v_{0 x}}
\end{aligned}
$$

7. For the following equations, set $x_{0}=0, a=0, y_{0}=0$, and solve for y in terms of g, v_{0}, x, and θ.

$$
\begin{aligned}
& x=x_{0}+\left(v_{0} \cos \theta\right) t+\frac{1}{2} a t^{2} \\
& y=y_{0}+\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}
\end{aligned}
$$

8. For the following equations, set $a=0$ and solve for m_{1} in terms of m_{2}, μ, and θ.

$$
\begin{gathered}
T-m_{1} g=m_{1} a \\
m_{2} g \sin \theta-\mu N-T=m_{2} a \\
N-m_{2} g \cos \theta=0
\end{gathered}
$$

9. For the following equations, set $\theta=0^{\circ}$, and solve for a in terms of $g, m_{1}, \mathrm{~m}_{2}, \mu$, and θ.

$$
\begin{gathered}
T-m_{1} g=m_{1} a \\
m_{2} g \sin \theta-\mu N-T=m_{2} a \\
N-m_{2} g \cos \theta=0
\end{gathered}
$$

10. For the following equations, set $\theta=90^{\circ}$, and solve for a in terms of $g, \mathrm{~m}_{1}$, and m_{2}.

$$
\begin{gathered}
T-m_{1} g=m_{1} a \\
m_{2} g \sin \theta-\mu N-T=m_{2} a \\
N-m_{2} g \cos \theta=0
\end{gathered}
$$

11. For the following equations, set $a=0, \theta=0^{\circ}$, and solve for m_{1} in terms of m_{2} and μ.

$$
\begin{gathered}
T-m_{1} g=m_{1} a \\
m_{2} g \sin \theta-\mu N-T=m_{2} a \\
N-m_{2} g \cos \theta=0
\end{gathered}
$$

12. For the following equations, set $a=0, \theta=90^{\circ}$, and solve for m_{1} in terms of m_{2}.

$$
\begin{gathered}
T-m_{1} g=m_{1} a \\
m_{2} g \sin \theta-\mu N-T=m_{2} a \\
N-m_{2} g \cos \theta=0
\end{gathered}
$$

13. For the following equations, set $\theta=0^{\circ}$, and solve for f in terms of m, r, and v.

$$
f=m\left(\frac{v^{2}}{r} \cos \theta-g \sin \theta\right)
$$

14. For the following equations, set $\theta=0^{\circ}$, and solve for μ in terms of g, r, and v.

$$
\mu=\frac{v^{2} \cos \theta-r g \sin \theta}{v^{2} \sin \theta+r g \cos \theta}
$$

Algebra Review

IV. Algebraically solving for multiple unknowns.

1. Given the following equations, solve for a numeric value for θ.
$x=y$

$$
\begin{gathered}
x=\frac{v_{0}^{2}}{g} \sin (2 \theta) \\
v_{0}^{2} \sin ^{2} \theta-2 g y=0 \\
\sin (2 \theta)=2 \sin \theta \cos \theta
\end{gathered}
$$

2. Given the following equations, solve for a numeric value for x and y.

$$
\begin{gathered}
x+2 y=32 \\
11 x+19 y=121
\end{gathered}
$$

3. Given the following equations, solve for a numeric value for x, y, and z.

$$
\begin{gathered}
x+2 y=3 z \\
3 x+2 y+z=14 \\
4 x+5 y+6 z=42
\end{gathered}
$$

V. †Matrices

Directions: Set up a matrix for the following and use the row reduced echelon form, rref(), function on your calculator to calculate the unknown values.

1. Given the following equations, solve for a numeric value for x, y, and z.

$$
\begin{gathered}
4 x+3 y=3 z \\
3 x+5 y+7 z=241 \\
4 x+5 y+6 z=223
\end{gathered}
$$

2. Given the following equations, solve for a numeric value for x, y, and z.

$$
\begin{gathered}
x+y=z \\
2 x+3 y=16 \\
2 y+3 z=10
\end{gathered}
$$

3. Given the following equations, solve for a numeric value for a, b, c, and d.

$$
\begin{gathered}
a+2 b+3 c=14 \\
4 a+3 b+2 c-d=24 \\
15 a+13 b=114 \\
23 d-19 c=142
\end{gathered}
$$

4. Given the following equations, solve for a numeric value for $I_{1}, I_{2}, I_{3}, I_{4}$, and I_{5}.

$$
\begin{gathered}
I_{2}+I_{3}=I_{1} \\
I_{4}+I_{5}=I_{2} \\
2 I_{1}+2 I_{2}+3 I_{4}=123 \\
2 I_{1}+2 I_{2}+I_{5}=123 \\
2 I_{1}+I_{3}=123
\end{gathered}
$$

5. Given the following equations, solve for a numeric value for $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{9}, I_{10}, I_{11}, I_{12}$, and I_{13}.

$$
\begin{gathered}
I_{2}+I_{5}+I_{9}=I_{1} \\
I_{3}+I_{6}=I_{2} \\
I_{4}+I_{8}=I_{5} \\
I_{5}+I_{13}=I_{9} \\
I_{6}+I_{10}=I_{11} \\
I_{3}+I_{4}=I_{7} \\
I_{8}+I_{13}=I_{12} \\
2 I_{2}+2 I_{3}+2 I_{7}=156 \\
2 I_{2}+2 I_{6}+2 I_{11}=156 \\
2 I_{4}+2 I_{5}+2 I_{7}=156 \\
2 I_{5}+2 I_{8}+2 I_{12}=156 \\
2 I_{9}+2 I_{12}+2 I_{13}=156 \\
2 I_{9}+2 I_{10}+2 I_{11}=156
\end{gathered}
$$

Geometry/Trigonometry Review

VI. Geometry/Trigonometry Review

1. Fill in the missing components of the Unit Circle

2. Determination of trigonometric functions (in degrees): Place answers in fraction form

Function	0°	45°	60°	120°	135°	210°	225°	315°	330°
$\sin \theta$									
$\cos \theta$									
$\tan \theta$									

3. Determination of trigonometric functions (in radians): Place answers in fraction form

Function	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	$\frac{5 \pi}{4}$	π	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	2π
$\sin \theta$									
$\cos \theta$									
$\tan \theta$									

VII. Congruent Angles

Directions: For the following diagram, check off all of the angles $(a-m)$ below that have the same value as θ.

VIII. Determination of lengths along the x - and y-axes.

1. Given that $a=5, b=3.5, c=4, d=4.5, \theta_{1}=55^{\circ}, \theta_{2}=20^{\circ}, \theta_{3}=75^{\circ}$, and $\theta_{4}=50^{\circ}$, Calculate the distance of the lengths along the x - and y-axes for each arrow.

Arrow	x-axis length	y-axis length
a		
b		
c		
d		

IX. Using the right triangle below (of lengths, a, b, and c, and angles, α and β) and the Pythagorean Theorem, write an appropriate formula to solve for each of the following:

1. a :
2. b :
3. c :

X. Using the right triangle below (of lengths, a, b, and c, and angles, α and β) and trigonometry, write an appropriate formula to solve for each of the following:
4. $\sin (\alpha)$:
5. $\sin (\beta)$:
6. $\cos (\alpha)$:
7. $\cos (\beta)$:
8. $\tan (\alpha)$:
9. $\tan (\beta)$:

XI. Using the triangle below (of lengths, a, b, c, and angles, α, β, γ) and using the Law of Cosines, write an appropriate formula to solve for each of the following:
10. a :
11. b :
12. c :

Graphing Review

XII. Graphing (Note: Computer generated graphs are also acceptable)

1. Group 1:
a. $y=\frac{1}{x}$
b. $y=-\frac{1}{x}$

2. Group 2:
a. $\quad y=\frac{1}{x^{2}}$
b. $y=-\frac{1}{x^{2}}$

3. Group 3:
a. $\quad y=\ln (x)$
b. $y=\ln \left(\frac{1}{2} x\right)$
c. $y=\ln (2 x)$

4. Group 4:
a. $y=e^{-x}$
b. $y=e^{-\frac{1}{2} x}$
c. $y=e^{-2 x}$

5. Group 5:
a. $y=1-e^{-x}$
b. $y=1-e^{-\frac{1}{2} x}$
c. $y=1-e^{-2 x}$

6. Group 6: (In radians from $x=0 \rightarrow x=2 \pi$)
a. $\quad y=\sin (x)$
b. $y=\sin \left(\frac{1}{2} x\right)$
c. $y=\sin (2 x)$

7. Group 7: (In radians from $x=0 \rightarrow x=2 \pi$)
a. $\quad y=\cos (x)$
b. $y=\cos \left(\frac{1}{2} x\right)$
c. $y=\cos (2 x)$

8. Group 8: (In radians from $x=0 \rightarrow x=2 \pi$)
a. $y=\tan (x)$
b. $y=\tan \left(\frac{1}{2} x\right)$
c. $y=\tan (2 x)$

9. Group 9: (In radians from $x=0 \rightarrow x=2 \pi$)
a. $y=\sqrt{\tan (x)}$
b. $y=\sqrt{\frac{1}{2} \tan (x)}$
c. $y=\sqrt{2 \tan (x)}$

10. Group 10: (In radians from $x=0 \rightarrow x=2 \pi$)
a. $y=e^{-\frac{1}{2} x} \cos (2 x)$
b. $y=e^{-x} \cos (2 x)$
c. $y=e^{-2 x} \cos (2 x)$

11. Group 11: (In radians from $x=0 \rightarrow x=2 \pi$)
a. $y=e^{-\frac{1}{2} x} \cos (4 x)$
b. $y=e^{-x} \cos (4 x)$
c. $y=e^{-2 x} \cos (4 x)$

12. Group 12: (In radians from $x=0 \rightarrow x=2 \pi$)
a. $y=e^{-\frac{1}{2} x} \cos (8 x)$
b. $y=e^{-x} \cos (8 x)$
c. $y=e^{-2 x} \cos (8 x)$

13. Miscellaneous Graph(s): (In radians from $x=0 \rightarrow x=2 \pi)$
a. $y=2 \sin x \cos x$

Geometry/Trigonometry in 2-Dimensional and 3-Dimenstional Space

XIII. 2D and 3D space

1. Calculate the exact distance for all of the black dots in terms of the side lengths, l or r, and angle for all of the black dots in degrees, from the origin $(0,0)$ for 2 D and $(0,0,0)$ for \dagger 3D. [example: $\frac{\sqrt{2}}{2} l @ 45^{\circ}$]
a. 2 particles [Please note: Some angles are not shown.]

b. 3 particles [Please note: Some angles are not shown.]

c. 4 particles (2D) [Please note: Some angles are not shown.]

d. $\dagger 8$ particles (3D) [Please note: Some angles are not shown.]

