Name:	 	
Date:		

ELECTROSTATICS LAB #1

ELECTRIC CHARGE, INSULATORS, CONDUCTORS, INDUCED CHARGE, & ELECTROSCOPES (AKA. "ECICICE")

STATION #1: AMBER ROD AND FUR

- (1) RUB the amber rod with the fur.
 - a. What is this process called?
 - b. Is the amber rod an insulator or a conductor?
 - c. What is the charge on the amber rod?
 - d. What is the charge on the fur?
- (2) Bring it NEAR the electroscope.
 - a. What is this process called?
 - b. What is happening to the electroscope?
- (3) Repeat the parts 1 and 2 but this time TOUCH the amber rod to the electroscope and remove the amber rod away from the electroscope.
 - a. What is this process called?
 - b. What happened to the electroscope?
- (4) CAREFULLY TOUCH the top of the electroscope to a sink faucet in the room.
 - a. What is this process called?
 - b. What happened to the electroscope? (Hopefully it is still in one piece and dry!!!)

STATION #2: TAPE

- 1. Tear off TWO 3-inch (~8 cm) piece of tape
- 2. Tab the end of each piece of the tape.
- 3. Place one of the piece of tape on a flat surface (i.e. Lab table top) and press it firmly on the surface.
- 4. Place the other piece of tape on it and press it firmly on the surface.
- 5. Remove the top piece of tape and attach the very end of the tape to the bottom of hanging cabinet.
- 6. Remove the bottom piece of tape from the flat surface and bring it close to the hanging tape.
 - a. What happens to the pieces of tape?
 - b. Does each piece of tape have the same charge or no charge?
 - c. If a charge is present, what process did you use to transfer the electrons in steps 3-5?
- 7. Repeat the above process with 3 pieces of tape.
 - a. IMPORTANT NOTE: Hang the top and middle pieces of tape in different locations NOT on top of each other!)
 - b. Use the bottom piece of tape to make your observations
 - i. Which piece of tape was attracted to the bottom piece of tape?
 - ii. Which piece of tape was repelled by the bottom piece of tape?
- 8. Repeat the above process with 4 pieces of tape.
 - a. IMPORTANT NOTE: Hang the top and two middle pieces of tape in different locations NOT on top of each other!)
 - i. Hypothesize: What do you think will happen when you bring the very bottom piece of towards the other pieces?
 - 1. The bottom piece of tape will (attract/repel) the top piece of tape.
 - 2. The bottom piece of tape will (attract/repel) the upper-middle piece of tape.
 - The bottom piece of tape will (attract/repel) the lower-middle piece of tape.
 - b. Use the bottom piece of tape to make your observations
 - i. Which piece(s) of tape was attracted to the bottom piece of tape?
 Top Upper-Middle Lower-Middle (Circle all that apply)
 - ii. Which piece(s) of tape was repelled by the bottom piece of tape?

 Top Upper-Middle Lower-Middle (Circle all that apply)
 - iii. Which of your hypotheses were correct? 1 2 3 (Circle)

STATION #3: GLASS ROD AND SILK

- (1) RUB the glass rod with the silk.
 - a. What is this process called?
 - b. Is the glass rod an insulator or a conductor?
 - c. What is the charge on the glass rod?
 - d. What is the charge on the silk?
- (2) Bring it NEAR the electroscope.
 - a. What is this process called?
 - b. What is happening to the electroscope?
- (3) Repeat the parts 1 and 2 but this time TOUCH the glass rod to the electroscope and remove the glass rod away from the electroscope.
 - a. What is this process called?
 - b. What happened to the electroscope?
- (4) CAREFULLY TOUCH the top of the electroscope to a sink faucet in the room.
 - a. What is this process called?
 - b. What happened to the electroscope? (Hopefully it is still in one piece and dry!!!)

STATION #4: BALLOONS

- (1) RUB the two latex balloons together.
 - a. What happens to the two latex balloons?
 - b. Are latex balloons conductors or insulators? Why or why not?
 - c. Does each latex balloon have the same charge or no charge?
 - d. If a charge is present, what process did you use to transfer the electrons?
- (2) Remove the two latex balloons from the ceiling and rub them on a sink faucet.
- (3) Re-attach the two latex balloons to the ceiling in their original location.
 - a. What happens to the two latex balloons?
 - b. Does each latex balloon have the same charge or no charge?
- (4) Now blow up two NEW latex balloons and hang them from the ceiling with string and tape.
- (5) RUB the two latex balloons on both sides of your head (unless you don't have hair). DO NOT remove them from your head.
 - a. What is happening to the two latex balloons?
- (6) Now walk away until the latex balloons are no longer attached to your head
 - a. What happens to the two latex balloons?
 - b. Does each latex balloon have the same charge or no charge?
 - c. If a charge is present, what process did you use to transfer the electrons?
- (7) Walk towards the latex balloons.
 - a. What happens to the latex balloons?
 - b. How many of the NEW latex balloons have the same charge as your hair?
 - c. How many of the NEW latex balloons have the opposite charge of your hair?
- (8) Remove the two NEW latex balloons from the ceiling and rub them on a sink faucet.
- (9) Re-attach the two NEW latex balloons to the ceiling in their original location.
 - a. What happens to the two NEW latex balloons?
 - b. Does each NEW latex balloon have the same charge or no charge?
- (10) RUB the two Mylar® balloons with a piece cloth and attach them to the floor with string and tape.
 - a. What happens to the two Mylar® balloons?
 - b. Are Mylar® balloons conductors or insulators? Why or why not?
 - c. Does each Mylar® balloon have the same charge or no charge?
 - d. If a charge is present, what process did you use to transfer the electrons?
- (11) Remove the two Mylar balloons from the ceiling and rub them on a sink faucet.
- (12) Re-attach the two Mylar[®] balloons to the floor in their original location.
 - a. What happens to the two Mylar® balloons?
 - b. Does each Mylar® balloon have the same charge or no charge?
 - c. Why does a Mylar® balloon float?
 - d. In terms of conductors and insulators, what is significant about the element that is trapped inside the Mylar® balloon?

Station #5: Bending Water

- 1. Turn on the water from a faucet. Set the speed to a GENTLE continuous flow.
- 2. RUB the amber rod with the fur.
 - a. What is this process called?
 - b. Is the amber rod an insulator or a conductor?
 - c. What is the charge on the amber rod?
 - d. What is the charge on the fur?
- 3. Bring it NEAR the stream of water.
 - a. What is happening to the stream of water and identify the direction of motion?
- 4. Hypothesize: Will the water be repelled by the charged glass rod? Why or why not?
- 5. RUB the glass rod with the silk.
 - a. What is this process called?
 - b. Is the glass rod an insulator or a conductor?
 - c. What is the charge on the glass rod?
 - d. What is the charge on the silk?
- 6. Bring it NEAR the stream of water from the same side as in Step 3.
 - a. What is happening to the stream of water and identify the direction of motion?
 - b. Did you expect this to happen?
 - c. Why does the water move in this direction?
 - d. Did both charged rods induce a charge in the water? Why or why not?

CONCLUSION QUESTIONS

- 1. What are the characteristics of a negative electric charge and how does it interact with other charged and uncharged objects? Provide examples.
- 2. What are the characteristics of a positive electric charge and how does it interact with other charged and uncharged objects? Provide examples.
- 3. How is the law of conservation of electric charge applied in this lab?
- 4. How does grounding each object affect its electric charge? Provide 3 different examples
- 5. What is electric charge distribution in water and how does it affect its properties? Provide examples from the lab.
- 6. How can we use the charge on the amber rod to determine the charge on the balloons?
- 7. Why is the water attracted to the charged rods regardless of their charge?
- 8. What are the similarities between the basic properties of an insulator and a conductor?
- 9. What is grounding and how does grounding affect the charge on (1) a conductor and (2) an insulator? Provide diagrams.
- 10. How do we qualitatively explain the process of charging by (1) friction, (2) conduction, and (3) induction?
- 11. How does an electroscope detect charge?
- 12. Does an electroscope have an inherent ability to determine the charge of an object? Provide 2 different examples of charge to justify your answer.
- 13. Develop a process to determine whether an object has a positive or negative charge using an electroscope?