
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Units of Chapter 5
•Kinematics of Uniform Circular Motion
-Dynamics of Uniform Circular Motion
•Highway Curves, Banked and Unbanked
•Nonuniform Circular Motion
-Centrifugation
•Newton's Law of Universal Gravitation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Units of Chapter 5
-Gravity Near the Earth's Surface;
Geophysical Applications
•Satellites and "Weightlessness"
•Kepler's Laws and Newton's Synthesis
-Types of Forces in Nature

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Looking at the change in velocity in the limit that the time interval becomes infinitesimally small, we see that

$$
a_{\mathrm{R}}=\frac{v^{2}}{r}
$$

$$
(5-1)
$$

(a) \qquad (c)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-1 Kinematics of Uniform Circular Motion
This acceleration is called the centripetal, or radial, acceleration, and it points towards the center of the circle.

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-2 Dynamics of Uniform Circular Motion

We can see that the force must be inward by thinking about a ball on a string: \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-3 Highway Curves, Banked and Unbanked
As long as the tires do not slip, the friction is static. If the tires do start to slip, the friction is kinetic, which is bad in two ways:

1. The kinetic frictional force is smaller than the static.
2. The static frictional force can point towards the center of the circle, but the kinetic frictional force opposes the direction of motion, making \qquad it very difficult to regain control of the car and continue around the curve.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-6 Newton' s Law of Universal Gravitation

The gravitational force on you is one-half of a Third Law pair: the Earth exerts a downward force on you, and you exert an upward force on the
\qquad Earth.

When there is such a disparity in masses, the reaction force is undetectable, but for bodies more equal in mass it can be significant.
\qquad
 Moon by Earth

5-6 Newton' s Law of Universal Gravitation

Therefore, the gravitational force must be proportional to both masses.

By observing planetary orbits, Newton also concluded that the gravitational force must decrease as the inverse of the square of the distance between the masses.

In its final form, the Law of Universal Gravitation reads:

where $\quad G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-7 Gravity Near the Earth's Surface; Geophysical Applications

Now we can relate the gravitational constant to the \qquad local acceleration of gravity. We know that, on the surface of the Earth: $m g=G \frac{m m_{\mathrm{E}}}{r_{\mathrm{E}}^{2}}$
Solving for g gives: $\quad g=G \frac{m_{\mathrm{E}}}{r_{\mathrm{E}}^{2}}$
Now, knowing g and the radius of the Earth, the \qquad mass of the Earth can be calculated:
$m_{\mathrm{E}}=\frac{g r_{\mathrm{E}}^{2}}{G}=\frac{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.38 \times 10^{6} \mathrm{~m}\right)^{2}}{6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}}=5.98 \times 10^{24}$ \qquad
\qquad

5-7 Gravity Near the Earth' s Surface; Geophysical Applications			
TABLE 5-1 Acceleration Due to Gravity at Various Locations on Earth			The acceleration due to gravity varies over the Earth' s surface due to altitude, local geology, and the shape of the Earth, which is not quite spherical.
Location	Elevation (m)	$\underset{\left(\mathrm{m} / \mathrm{s}^{2}\right)}{g}$	
New York	0	9.803	
San Francisco	0	9.800	
Denver	1650	9.796	
Pikes Peak	4300	9.789	
Sydney, Australia	0	9.798	
Equator	0	9.780	
North Pole (calculated)	0	9.832	
Copring 020	Prason Promico Al		

\qquad
\qquad
Acceleration Due to Gravity
at Various Locations on Earth The acceleration due to gravity varies over the Earth's surface due to altitude, local geology, and the shape of the Earth, which is not quite spherical.

5-8 Satellites and "Weightlessness"
Satellites are routinely put into orbit around the Earth. The tangential speed must be high enough so that the satellite does not return to Earth, but not so high that it escapes Earth's gravity altogether. $\quad \begin{gathered}27,000 \mathrm{~km} / \mathrm{h} \\ \text { circular }\end{gathered} \quad 30,000 \mathrm{~km} / \mathrm{h}$ elliptical $40,000 \mathrm{~km} / \mathrm{h}$ $40,000 \mathrm{~km} / \mathrm{h}$
escape

5-8 Satellites and "Weightlessness"
The satellite is kept in orbit by its speed - it is continually falling, but the Earth curves from \qquad underneath it.

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-9 Kepler' s Laws and Newton's Synthesis

The ratio of the square of a planet's orbital period is proportional to the cube of its mean
\qquad distance from the Sun.
\qquad

TABLE 5-2 Planetary Data Applied to Kepler's Third Law

	Mean Distance from Sun, \boldsymbol{s} $(\mathbf{1 0} \mathbf{k m})$	Period, \boldsymbol{T} (Earth years)	$\mathbf{s}^{\mathbf{3} / \boldsymbol{T}^{\mathbf{2}}}$ $\left(\mathbf{1 0}^{\mathbf{2 4}} \mathbf{k m}^{\mathbf{3}} / \mathbf{y}^{\mathbf{2}}\right)$
Planet	57.9	0.241	3.34
Mercury	108.2	0.615	3.35
Venus	149.6	1.0	3.35
Earth	227.9	1.88	3.35
Mars	778.3	11.86	3.35
Jupiter	1427	29.5	3.34
Saturn	2870	84.0	3.35
Uranus	4497	165	3.34
Neptune	5900	248	3.34
Pluto	Copyright © 2005 Pearson Prentice Hall. Inc.		

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

5-10 Types of Forces in Nature

Modern physics now recognizes four fundamental forces:

1. Gravity
2. Electromagnetism
3. Weak nuclear force (responsible for some types of radioactive decay)
4. Strong nuclear force (binds protons and neutrons together in the nucleus)

5-10 Types of Forces in Nature

So, what about friction, the normal force, tension, and so on?
Except for gravity, the forces we experience every day are due to electromagnetic forces
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad acting at the atomic level.

Summary of Chapter 5

- An object moving in a circle at constant speed is in uniform circular motion.
\qquad
- It has a centripetal acceleration $\quad a_{\mathrm{R}}=\frac{v^{2}}{r}$
- There is a centripetal force given by

$$
\Sigma F_{\mathrm{R}}=m a_{\mathrm{R}}=m \frac{v^{2}}{r}
$$

-The centripetal force may be provided by friction, \qquad gravity, tension, the normal force, or others.

Summary of Chapter 5
- Newton's law of universal gravitation:
$\qquad F=G \frac{m_{1} m_{2}}{r^{2}}$
-Satellites are able to stay in Earth orbit because
of their large tangential speed.

