
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Units of Chapter 4

- Force \qquad
- Newton' s First Law of Motion
- Mass
- Newton's Second Law of Motion \qquad
- Newton's Third Law of Motion
- Weight - the Force of Gravity; and the Normal Force \qquad
\qquad

Units of Chapter 4
- Solving Problems with Newton's Laws:
Free-Body Diagrams
- Applications Involving Friction, Inclines
- Problem Solving - A General Approach

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4-2 Newton's First Law of Motion

Newton's first law is often called the law of inertia. \qquad
Every object continues in its state of rest, or of uniform velocity in a straight line, as long as no \qquad

\qquad
\qquad
\qquad
\qquad

4-2 Newton's First Law of Motion
Inertial reference frames:
An inertial reference frame is one in which
Newton's first law is valid.
This excludes rotating and accelerating frames.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4-3 Mass

Mass is the measure of inertia of an object. In the SI system, mass is measured in kilograms. \qquad
Mass is not weight:
Mass is a property of an object. Weight is the force exerted on that object by gravity.
If you go to the moon, whose gravitational acceleration is about $1 / 6 \mathrm{~g}$, you will weigh much less. Your mass, however, will be the same.

4-4 Newton' s Second Law of Motion

Newton's second law is the relation between acceleration and force. Acceleration is \qquad proportional to force and inversely proportional to mass. \qquad

(4-1)

4-4 Newton's Second Law of Motion			
Force is a vector, so $\Sigma \overrightarrow{\mathbf{F}}=m \overrightarrow{\mathbf{a}}$ is true along each coordinate axis.			
TABLE 4-1 Units for Mass and Force			The unit of force in the SI system is the newton (N).
System	Mass	Force	
SI	$\underset{(\mathrm{kg})}{\substack{\text { kilogram }}}$	newton (N) ($=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$	Note that the pound is a unit of force, not of mass,
	gram (g)	$\underset{\left(=\mathrm{g} \cdot \mathrm{~cm} / \mathrm{s}^{2}\right)}{\text { dyne }}$	and can therefore be
British	slug	pound (lb)	equated to newtons but
$\begin{array}{rl} \text { Conversion factors: } 1 & 1 \text { dyne }=10^{-5} \mathrm{~N} \\ 11 b \sim 4.45 \mathrm{~N} . \end{array}$			

4-5 Newton' s Third Law of Motion

Any time a force is exerted on an object, that force is caused by another object.
Newton's third law:
Whenever one object exerts a force on a second object, the second exerts an equal force in the opposite direction on the first. \qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

4-5 Newton' s Third Law of Motion

Rocket propulsion can also be explained using Newton's third law: hot gases from combustion spew out of the tail of the rocket at high speeds.
\qquad The reaction force is what propels the rocket.

\qquad
\qquad
\qquad
\qquad
\qquad

4-5 Newton' s Third Law of Motion

Helpful notation: the first subscript is the object that the force is being exerted on; the second is the source.
This need not be
done indefinitely, but
is a good idea until
you get used to
dealing with these
forces.

4-6 Weight - the Force of Gravity; and the Normal Force

Weight is the force exerted on an object by gravity. Close to the surface of the Earth, where the gravitational force is nearly constant, the weight is:

$$
\overrightarrow{\mathbf{F}}_{\mathrm{G}}=m \overline{\mathbf{g}}
$$

4-6 Weight - the Force of Gravity; and the Normal Force

\qquad
An object at rest must have no net force on it. If \qquad it is sitting on a table, the force of gravity is still there; what other force is there?
The force exerted perpendicular to a surface is

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Cosrigh O 2005 Pearson
2. For one object, draw a free-body diagram, showing all the forces acting on the object. Make the magnitudes and directions as accurate as you can. Label each force. If there are multiple objects, draw a separate diagram for each one.
3. Resolve vectors into components.
4. Apply Newton's second law to each component.
5. Solve.
Coprighte 2005 Pearson Prentice Hall, Inc. \qquad
\qquad
\qquad

4-7 Solving Problems with Newton's Laws - Free-Body Diagrams

When a cord or rope pulls on an object, it is said to be under tension, and the force it exerts
 is called a tension force.

4-8 Applications Involving Friction, Inclines
On a microscopic scale, most surfaces are rough. The exact details are not yet known, but the force can be modeled in a simple way.

For kinetic - sliding friction, we write:
\qquad
$F_{\mathrm{fr}}=\mu_{\mathrm{k}} F_{\mathrm{N}}$ \qquad
μ_{k} is the coefficient of kinetic friction, and is different for every pair of surfaces.

4-8 Applications Involving Friction, Inclines

TABLE 4-2 Coefficients of Friction ${ }^{+}$
\qquad
\qquad

Surfaces $\quad \begin{gathered}\text { Coefficient of } \\ \text { Static Friction } \mu_{s}\end{gathered} \quad$ Coefficient of
Wood on wood

Ice on ice
Metal on metal (lubricated)
Steel on steel (unlubricated)
Rubber on dry concrete
Rubber on wet concrete
Rubber on other solid surface
Teflon ${ }^{\text {® }}$ on Teflon in air
Teflon on steel in air
Lubricated ball bearings
Synovial joints (in human limbs)
Values are approximate and intended only as a guide.

4-8 Applications Involving Friction, Inclines

Static friction is the frictional force between two surfaces that are not moving along each other. Static friction keeps objects on inclines from sliding, and keeps objects from moving when a force is first applied.

$$
F_{\mathrm{fr}} \leq \mu_{\mathrm{s}} F_{\mathrm{N}}
$$

4-8 Applications Involving Friction, Inclines
The static frictional force increases as the applied force increases, until it reaches its maximum. Then the object starts to move, and the kinetic

4-8 Applications Involving Friction, Inclines

An object sliding down an incline has three forces acting on it: the normal force, gravity, and the frictional force.

- The normal force is always perpendicular to the surface.
- The friction force is parallel to it.
- The gravitational force points down

4-9 Problem Solving - A General Approach

1. Read the problem carefully; then read it again.
2. Draw a sketch, and then a free-body diagram.
3. Choose a convenient coordinate system.
4. List the known and unknown quantities; find relationships between the knowns and the unknowns.
5. Estimate the answer.
6. Solve the problem without putting in any numbers (algebraically); once you are satisfied, put the numbers in
7. Keep track of dimensions.
8. Make sure your answer is reasonable

Summary of Chapter 4

- Newton's first law: If the net force on an object is zero, it will remain either at rest or moving in a straight line at constant speed.
- Newton' s second law: $\sum \vec{F}=m \overrightarrow{\mathbf{a}}$
- Newton's third law: $\overrightarrow{\mathbf{F}}_{\mathrm{AB}}=-\overrightarrow{\mathbf{F}}_{\mathrm{BA}}$
- Weight is the gravitational force on an object.
- The frictional force can be written: $F_{\text {fri }}=\mu_{\mathrm{k}} F_{\mathrm{N}}$ \qquad (kinetic friction) or $F_{\mathrm{fr}} \leq \mu_{\mathrm{s}} F_{\mathrm{N}}$ (static friction)
- Free-body diagrams are essential for problemsolving

